
18 The Delphi Magazine Issue 69

Beating The System: Taming
The Windows Desktop, Part 3
by Dave Jewell

Let’s briefly review the story so
far. Two months ago, I intro-

duced you to DIPSLIB.DLL, created
by Jeffrey Richter, describing how
it worked and enlightening you
with the joys of shared data seg-
ments. I used a slightly massaged
version of this DLL to communi-
cate with a host application writ-
ten in Delphi, thus demonstrating
how to save and restore the cur-
rent desktop layout. Although that
was great as far as it went, the need
to use a DLL written in C/C++ was
something of a thorn in my flesh,
and I eventually realised how to
completely eliminate the need for a
shared data segment, thereby
making it possible to rewrite the
DLL using Delphi. At the same time,
I wanted to get away from the
all-or-nothing approach to saving
the desktop layout. My aim was to
create something that gave much
finer control over individual desk-
top items and, as part of this strat-
egy, we looked at the wondrous
WM_COPYDATA message, which I’m
now using to retrieve information
on individual desktop items.

This month, we’ll round off this
look at programmatic desktop
management by adding a lot more
functionality to the DLL, and we’ll
rewrite the code on the application
side, packaging everything into a
reusable component that can be
easily used from any Delphi
application.

Introducing
TDesktopManager
TDesktopManager is the name of our
new Delphi component. The most
straightforward approach here is
to make TDesktopManager a non-
visual component (ie, inherit from
TComponent), but if you want to
create a visual component that
graphically displays a tiny real-
time representation of the desk-
top, allows you to drag tiny

desktop icons around in this
control and have the real desktop
items follow suit then... err...
you’re probably a very strange
person.

Because of the requirement to
inject a DLL into the address space
of Windows Explorer, I decided to
add an Active property to the com-
ponent. This Boolean property
(which is False by default) deter-
mines whether or not the DLL is
currently injected into Explorer’s
process space. Setting it to True
will automatically inject the DLL
and setting it to False will
obviously do the reverse.

I chose to do things this way
because I felt it would be rather
inflexible if the mere act of placing
a TDesktopManager component
caused the DLL to be needlessly
injected regardless of whether or
not one made use of the compo-
nent, and for the whole length of
time that the host application is
running. After all, the whole point
of the Win32 protection mecha-
nism is to prevent one badly-
behaved application from damag-
ing others, or crashing the entire
operating system. Murphy’s First
Law dictates that if something can
go wrong, it will, so it makes sense
to be able to programmatically

control when those barriers are
raised and lowered. While the
component is in the inactive state,
it obviously can’t use the DLL to
communicate with the desktop
listview control.

Listing 1 shows the SetActive
method, which forms the ‘setter’
routine for the Active property.
Having established that the Active
property is being set, the code first
checks to see if the hidden dialog
can be found and bottles out with
an appropriate exception if so. As
I’ve discussed before, it’s critically
important that the DLL shouldn’t
be allowed to hook Explorer more
than once: if it does, deeply bad
things will happen.

The code presented here has
been tested and found to be very
robust under Windows 2000, Win-
dows ME and (according to a
reader who kindly emailed me) NT
4.0. However, you should appreci-
ate that if some other utility has
already hooked Explorer in a simi-
lar fashion, then all bets are off.
While developing this code, I expe-
rienced a number of crashes which
went away as soon as I removed
the On Display component of
MicroAngelo 5.0 from my system.

procedure TDesktopManager.SetActive (Value: Boolean);
var Msg: TMsg;
begin
if fActive <> Value then begin
if Value then begin
if FindWindow (Nil, 'Delphi Desktop 2001') <> 0 then
raise EDesktopManager.Create(
'Another instance of ' + ClassName + ' is already active.')

else begin
DeskManagerLoad (fAppWindow);
GetMessage (Msg, fAppWindow, DM_DLLReady, DM_DLLReady);
fDeskWin := FindWindow (Nil, 'Delphi Desktop 2001');
if fDeskWin = 0 then raise
EDesktopManager.Create('DLL initialization failed');

fActive := True;
end;

end else begin
SendMessage (fDeskWin, wm_Close, 0, 0);
while IsWindow (fDeskWin) do
Application.ProcessMessages;

DeskManagerUnload;
fActive := False;

end;
end;

end;

➤ Listing 1

May 2001 The Delphi Magazine 19

On Display, in case you don’t know,
is a desktop utility for controlling
icon spacing, foreground and back-
ground text colours, and various
other characteristics of your desk-
top. I felt sure that, somehow, my
code and the On Display code were
both trying to do the same thing
and causing problems. It’s really a
similar problem to that of the old
DOS days when two TSRs tried to
hook the same interrupt. Caveat
programmer!

Assuming that the call to
FindWindow returns zero, the
DeskManagerLoad routine is called as
described last month. You’ll notice
that I’ve slightly re-jigged the sub-
sequent call to GetMessage in the
interests of robustness. Rather
than just calling GetMessage to wait
for any incoming message on the
current thread, the call now waits
for one specific message, DM_DLL-
Ready, to be received by fAppWindow,
about which more below. In order
to achieve this, the code inside
GetMsgProc (within the DLL) now
posts to a specific window rather
than using PostThreadMessage:

PostMessage(AppWindow,
DM_DLLReady, 0, 0);

The Deeply Fragrant
AllocateHWnd Function
Whenever you implement a
non-visual Delphi component that

needs to receive messages from
some other window, you’re faced
with an interesting dilemma.
There’s a fairly obvious require-
ment: a window to receive the mes-
sages. But which window to use?
Even non-visual components are
generally sat on a form, and you
can easily use the Ownerproperty to
find the form itself. However, this
means that you’ve got to start
hooking the message handling of
your owner form in order to
retrieve the messages you want. It
can be done, but unless you’re
careful it can get quite ugly. Is there
an easier way?

As it happens, there is. Let me
introduce you to AllocateHWnd, a
very useful but little-known func-
tion in FORMS.PAS. It’s not too
surprising that this function is
largely undiscovered, since the
Borlandites seem to have removed
all reference to it from the Delphi 5
online help! However, you’ll
quickly forgive those denizens of
Scott’s Valley once you realise

what a wondrous little gem
they’ve written for you:

function AllocateHWnd(
Method: TWndMethod): HWND;

Ordinarily, if you were creating
a custom window for exclusive
use by a component, you’d
have to first register a window
class, and then you’d need to
create the window; oh, and

you’d also have to set up a window
message handling function, etc,
etc. All very tedious using the
stone knives and bearskins pro-
vided by the Windows API. Fortu-
nately, AllocateHWnd does the
whole thing for you in one easy
step: just call this routine and it
will give you back a genuine
window handle whose Windows
procedure is automatically set to
the specified method. Ordinarily, a
window procedure can’t be a
method of a Delphi class because
of different calling conventions,
the implicit Self parameter, and
other issues. However, Allocate-
HWnd calls another auto-magical
routine, MakeObjectInstance,
which transmogrifies an ordinary
method into something that can be
used as a window procedure at the
API level. To see how this all
works, look at Listing 2.

fAppWindow is a private field of
the TDesktopManager class and is
initialised in the component’s con-
structor, passing to AllocateHWnd
the address of the ReceiverHook
method which handles WM_COPY-
DATA responses returned from the
DLL. In a similar vein, the destruc-
tor first sets the component as
inactive, causing the DLL to be
released from Explorer’s address
space. The private window is then
destroyed and the inherited
destructor is called. With a compo-
nent such as this, cleanup code is
obviously very important, if the
application were able to exit with-
out calling DeskManagerUnload, then
it would definitely be tears before
bedtime.

At this point, it’s time to start
adding the bells and whistles. I
began by adding some simple func-
tionality to get and set the text
colour and background colour

constructor TDesktopManager.Create (AOwner: TComponent);
begin
Inherited Create (AOwner);
fAppWindow := AllocateHWnd (ReceiverHook);

end;
destructor TDesktopManager.Destroy;
begin
// Bow out gracefully...
SetActive (False);
DeallocateHWnd (fAppWindow);
Inherited Destroy;

end;

➤ Listing 2

➤ Figure 1: Here's an example
of what will happen if you
don't force the desktop
window to perform a
redraw when changing a
caption or repositioning an
item. As you can see, the
caption for 'My Documents'
is in glorious stereo!

20 The Delphi Magazine Issue 69

used to display icon captions on
the desktop. This was imple-
mented via the two property
declarations shown here:

property TextColor: TColorRef
index 0 read GetColor
write SetColor stored False;

property BackgroundColor:
TColorRef index 1
read GetColor write SetColor
stored False;

I made a decision that TDesk-
topManager would implement as
much functionality as possible
without the need to set the Active
property and inject the DLL. Based
on what we’ve learnt so far, this
means that anything which doesn’t
require passing pointers to/from
the desktop listview control can
be implemented without worrying
about the Active flag. If you try and
do something which requires the
active state (eg retrieving the cap-
tion of a desktop item) then an
EDesktopManager exception will be
raised. To help enforce this distinc-
tion, I placed the ‘always-available’
properties in the component’s

published section so that (type
permitting!) they’re visible to the
Object Inspector. Those proper-
ties which require the active state
have public access.

While writing the SetColor rou-
tine (see Listing 3), I discovered an
interesting quirk. As you can see
from the code, whenever the fore-
ground or background text colour
is changed, the RedrawItems routine
is called to force the desktop to
redraw each item (the code to do
this was given last month). How-
ever, Microsoft document the fact
that if you use a special colour
value of CLR_NONE (which is actually
$FFFFFFFF and therefore not really
a colour at all) it’s interpreted as a
transparent background colour,
thus giving a very attractive effect
when you’ve got a background
bitmap on your desktop. Unfortu-
nately, there seems to be a bug in
the listview control, such that set-
ting CLR_NONE as the background
colour causes the redrawing code
to be ignored. After a little experi-
mentation, I added a ‘hit-me-with-
a-big-stick’ flag (!) to RedrawItems.
This forces a redraw by hiding and
then immediately showing the
desktop window. Naturally, I only

use this option where strictly
necessary in order to minimise
possible flicker problems.

Location, Location, Location!
My next job was to add some facil-
ity for retrieving the captions and
positions of a specified item. This
was done through the property
declarations given below:

property Caption[
Index: Integer]: String
read GetCaption
write SetCaption;

property Position[
Index: Integer]: TPoint
read GetPosition
write SetPosition;

With some minor tweaking, the
GetCaption routine is essentially
the same as the code I showed you
last month, so I won’t go over the
same ground again. The GetPos-
ition routine is as shown in Listing
4. NeedActive is a frequently used
method which simply checks to
see if the Active property is set,
raising an exception if not.

The general principle is the
same: validate the index argument
and then call the PendOnDesk-
topMessage (also discussed last
time round) to send the DM_Get-
ItemPosition message to the DLL,
spinning until we get a response.
Within the DLL code, the DM_Get-
ItemPosition message is fielded by
HandleGetItemPosition, shown in
Listing 5.

In this case, I suppose I could
have simplified things even further
by merely returning the positional
information as the message result
of DM_GetItemPosition. In other
words, pack the x and y coordi-
nates retrieved from ListView_Get-
ItemPosition into a single 32-bit
result. It should be noted, though,
that since the underlying LVM_GET-
ITEMPOSITION message requires a
pointer to a TPoint, the use of the
DLL can’t be avoided in this case.

Astute readers might naturally
wonder why it is that you can (for
example) send a WM_GETTEXT mes-
sage to a button control belonging
to another process and success-
fully retrieve the caption of that
button, despite the fact that you’ve

function HandleGetItemPosition (DlgWnd: hWnd; Index: Integer): Integer;
var
pt: TPoint;
Count: Integer;
cds: TCopyDataStruct;

begin
Result := 0;
Count := SendMessage (DeskManagerListView, lvm_GetItemCount, 0, 0);
if (Index >= 0) and (Index < Count) then begin
ListView_GetItemPosition (DeskManagerListView, Index, pt);
cds.dwData := DM_GetItemPosition;
cds.cbData := sizeof (pt);
cds.lpData := @pt;
Result := SendMessage (AppWindow, wm_CopyData, DlgWnd, Integer (@cds));

end;
end;

➤ Above: Listing 4 ➤ Below: Listing 5

➤ Listing 3

procedure TDesktopManager.SetColor (Index: Integer; Value: TColorRef);
begin
if GetColor (Index) <> Value then begin
case Index of
0: ListView_SetTextColor (DeskManagerListView, Value);
1: ListView_SetTextBkColor (DeskManagerListView, Value);

end;
RedrawItems ((Value = CLR_None) and (Index = 1));

end;
end;

function TDesktopManager.GetPosition (Index: Integer): TPoint;
begin
NeedActive;
if (Index < 0) or (Index >= GetItemCount) then
Result := Point (-1, -1)

else
Result := PPoint (PendOnDesktopMessage (DM_GetItemPosition, Index, 0))^;

end;

22 The Delphi Magazine Issue 69

passed a pointer as part of the mes-
sage! The reason is that, when
Microsoft implemented 32-bit Win-
dows, they added low-level code to
the system which silently copies
the required information from the
address space of one process to
that of another. This low-level code
was intended to smooth the transi-
tion from the 16-bit to the 32-bit
platform, and doesn’t apply to the
newer ‘common controls’ which
include listview, treeview, status
bar and others.

Of course, we also need to be
able to set the position of a desktop
item, since programmatically
restoring the desktop layout is one
of the primary aims of this discus-
sion. Fortunately, this is dead easy,
since Microsoft didn’t use pointers
in their implementation of LVM_SET-
ITEMPOSITION, choosing instead to
pack the x and y coordinates into
lParam. See Listing 6.

Of course, this leaves the thorny
issue of how to programmatically
change the caption (rather than
position) of a desktop item. Why
thorny? If you look at the source
code for the ListView_SetItemTextA
routine (see COMMCTRL.PAS) you’ll
see that we have to pass a pointer
to the required new caption string.
So far, we’ve managed to avoid
passing pointers to the hidden
dialog window (which, you’ll
recall, is running in Explorer’s
address space) by the simple expe-
dient of using WM_COPYDATA to
retrieve responses from the DLL
code. But that technique was for
retrieving data from the DLL. In this
case, we’re trying to pass data to
the DLL. Disaster!

Fortunately for us, the solution
is quite simple. Just as we have

used WM_COPYDATA to send data from
the DLL, we can use exactly the
same mechanism to send it to the
DLL. Listing 7 gives the source
code to the SetCaption routine that
I eventually came up with.

Part way through the develop-
ment of this routine, I suddenly
realised that I wasn’t passing Index
(the number of the desktop item
that we’re interested in) through to
the DLL. Duh! Unfortunately, this
presents a problem because wParam
and lParam are already used for the
purposes of the WM_CopyData mes-
sage itself. I therefore had no
option but to include the index
value into the data block which is
sent to the DLL. Thus, the dwData
field of the TCopyDataStruct record
tells the DLL that this is a
DM_SetItemText command. The
lpData field points to a chunk of
data which is made up of the 32-bit
index value followed by the new
caption string.

Regular readers will, as ever,
note my fondness for the absolute
keyword, which is very useful in
cases such as this and avoids a lot
of messy casting and other shenan-
igans. During the development of
the new Kylix compiler, a certain
Borlandite (who had best be name-
less!) was in favour of removing
absolute from the language specifi-
cation. Myself and a number of
others strongly objected, and I’m
glad to say that common sense
prevailed.

You’ll notice that, as with the
colour-changing code mentioned
earlier, we need to call another
new routine, RedrawSingleItem, to

persuade the listview control to
cleanly draw the new caption. If
you don’t do this, then the listview
control will simply draw the new
caption string on top of the old one
when it first receives the LVM_Set-
ItemText message!! Pathetic, but
true! I had hoped that the
LVM_RedrawItems message sent
from RedrawSingleItem would be
enough to force a redraw, but once
again, it’s necessary to hide and
then show the desktop.

When it came to test out the
code which repositions desktop
icons, I discovered that, here
again, Microsoft’s redrawing code
simply doesn’t work and you’re
forced to hide/show the desktop
window. This incensed me suffi-
ciently that I decided to nail the
problem once and for all. If you
look at the code on this month’s
disk, you’ll see that I’ve imple-
mented a new message called
DM_GetItemRect. This retrieves the
bounding rectangle of the desktop
icon (including the text caption
area) by sending a ListView_Get-
ItemRect message to the desktop
listview control. Since this
involves a pointer to a rectangle, it
has to be done within the DLL.
With access to the icon’s bounding
rectangle, we can then implement
a small... uhh... kludge, whereby
the icon we’re interested in is
moved off-screen, the previously-
occupied bounding rectangle is
invalidated and redrawn, and the
icon is then moved back to where
we want it to be before being
redrawn again. This little hackette
works well for the code to change
captions and reposition icons, but
it’s obviously less appropriate
when the foreground/background
colours of the text captions are
changed, because this affects all
the items on the desktop.

Putting It All Together
At this point, we’ve got reliable,
robust code to change the text

procedure TDesktopManager.SetPosition (Index: Integer; Value: TPoint);
begin
if (Index >= 0) and (Index < GetItemCount) then
ListView_SetItemPosition (DeskManagerListView, Index, Value.x, Value.y);

end;

➤ Listing 6

procedure TDesktopManager.SetCaption (Index: Integer; const Value: String);
var
cds: TCopyDataStruct;
buff: array [0..255] of Char;
Idx: Integer absolute buff;

begin
NeedActive;
if (Index >= 0) and (Index < GetItemCount) then begin
Idx := Index;
StrPCopy (@buff [sizeof (Integer)], Value);
cds.dwData := DM_SetItemText;
cds.cbData := Length (Value) + 1 + sizeof (Integer);
cds.lpData := @buff;
SendMessage (fDeskWin, WM_CopyData, fAppWindow, Integer (@cds));
RedrawSingleItem (Index, True);

end;
end;

➤ Listing 7

24 The Delphi Magazine Issue 69

colour, icon captions and icon
positions. We’re now set fair to
implement a nice little desktop
layout save/restore utility. But
first, I wanted to test everything
out by developing a little testbed
utility. This program, called
DESKTESTER.EXE, can be seen run-
ning in Figure 2. As you can see, it
provides facilities for viewing the
captions of all available desktop
items, along with their position
within the listview. You can refresh
the display at any time by clicking
the Refresh button, and you can
use the controls on the right hand
side of the window to change
things such as the name of a desk-
top item, its position, or the
‘item-wide’ colour settings. There
is also a button you can click which
will set a transparent background
colour for the item captions. If you
do this, then the Text Background
Color panel will display the word
‘transparent’ rather than showing
a specific colour.

Although the code for this little
testbed program is reasonably
straightforward, there are some
important points to note here.
Firstly, when you check through
the code, you’ll see that I set the
component’s Active property only
when needed, and clear it after-
wards. In other words, the DLL
remains injected for only as long as
it’s needed. Since the DLL is
already mapped into the process
space of the testbed application
(by virtue of the external refer-
ences to it in DesktopManager.Pas)
the process of injecting and
‘un-injecting’ is actually very fast.
By minimising the amount of time
that the DLL sits in Explorer’s
address space, we minimise the
likelihood of unpleasant clashes

with other software that uses
similar techniques.

While on the subject of the
Active flag, I eventually realised
that you really need to have it set
to False before running a program
from within the IDE. If you don’t do
this, Delphi will try to create a
runtime instance of TDesktop-
Manager, and fail, because there is
already an active instance of the
component on the design-time
form. This being the case, it really
makes sense to turn Active into a
public rather than published prop-
erty so that it can’t be inadver-
tently set to True at design-time.

Something else you should be
cautious about is changing the
name of ‘well-known’ desktop
items such as My Documents, My Com-
puter, Recycle Bin, and so forth.
The code I’ve developed here will
certainly allow you to do this, but if
so, it’s anybody’s guess how other
software reacts to the disappear-
ance of some expected desktop
item. I’d err on the side of caution
here, if I were you.

When working with the desktop,
it’s also important to realise that
the number, names and positions
of desktop items can potentially
change at any time. For this reason,

you can’t simply retrieve the cap-
tion of an item, allow the user to
spend five minutes typing in a new
name, and then write the changed
caption out to what (you hope!) is
the same item. Instead, you need
to add sanity checks to ensure that
the item that’s changed is the item
you want.

This is illustrated by the code in
Listing 8. Every time the listview
control (the one in the testbed,
not the one on the desktop!) has its
selection changed, the Original-
Idx, OriginalName and OriginalPos
fields are updated to reflect the
index, initial name and initial posi-
tion of the currently selected item.
When it’s time to alter an item, the
code verifies that we’re still deal-
ing with the same control and that
it’s at the same position we
expected it to be! As an alternative
to this approach, you might care to
look at the LVM_FindItem message
which instructs the listview con-
trol to perform an item search at
the API level.

Right then, on with the show.
Figure 3 shows a little desktop
save/restore program which I
wrote using TDesktopManager. This
program is called DeskLayout and is
included on this month’s disk
along with everything else (see the

➤ Figure 2: The testbed program
serves as a vehicle for testing
out the functionality of the
TDesktopManager/DLL
combination. Please note the
comments in the text
concerning re-entrancy and
the disabling of the 'Refresh'
button.

procedure TForm1.ChangeCaptionClick(Sender: TObject);
begin
dm.Active := True;
try
// Check that the target item still exists with same index
if dm.Caption [OriginalIdx] = OriginalName then
if dm.Position [OriginalIdx].x = OriginalPos.x then
if dm.Position [OriginalIdx].y = OriginalPos.y then begin
dm.Caption [OriginalIdx] := CurName.Text;
RefreshBtn.Click;

end;
finally
dm.Active := False;

end;
end;

➤ Listing 8

May 2001 The Delphi Magazine 25

Files Roundup section). The opera-
tion of this program is pretty
straightforward: when you click
the Save Layout button it saves the
position of all current desktop
items into a file in the same
directory as the executable. If you
wanted to, you could embellish
things with File Open/Save dialogs,
set up a file association for the desk
layout file, etc, etc, but I wanted to
keep things as simple as possible.
When you click the Restore Layout
button, the desktop layout is
restored to whatever config-
uration it had on the last save.

As I mentioned two months ago,
when I started this foray into desk-
top listview access, one of the big-
gest problems with the brain-dead
Windows desktop is the way in
which it ‘thoughtfully’ rearranges
your desktop items every time the
Windows screen resolution is
saved. This is a particularly irritat-
ing problem for technical journal-
ists, because we are frequently
asked to provide screenshots at a
specific pixel resolution, (eg 800 by
600) but few people would want to
habitually use that sort of resolu-
tion these days! In order to address
this particular problem, I wrote
DeskLayout such that it would
save/load a different file
depending on the current
screen resolution in effect.
In other words, if you use
1152 by 864 pixels, then the
‘Save Layout’ code in
DeskLayout will spit out a
file called 1152x864.desk
and this is the filename that
the ‘Restore Layout’ code

will look for when operating at the
same resolution. Using this simple
technique, the program can easily
maintain a preferred desktop
layout for each screen resolution
that you use.

I won’t bore you with a lengthy
description of all the source code
in the DeskLayout program; bearing
in mind the previous discussion,
it’s all pretty straightforward stuff.
Instead, we will just focus on one
code snippet: see Listing 9. This
shows the heart of the ‘Restore
Layout’ code. At this point, fs is a
TFileStream object which refer-
ences the desk layout file being
restored. The file starts off with a
special signature string that’s used
to authenticate the file. (You might
perhaps wonder why this signa-
ture string finishes with a
sequence of CR, LF and EOF charac-
ters. This is actually an old Borland
trick: try displaying the contents of
the file using TYPE from a DOS com-
mand line and you will see what I
mean.)

➤ Figure 3: The desktop layout
load/save demo creates
differently named files
according to the screen
resolution being used, making
it easy to keep layouts for
different resolutions.

Names := TStringList.Create;
try
// Get *current* desktop status for index mapping
for Idx := 0 to dm.ItemCount - 1 do Names.Add (dm.Caption [Idx]);
// Now do the biz
for Idx := 0 to FileCount - 1 do begin
// Read item name - pascal format
fs.Read (Len, sizeof (Len));
SetLength (ItemName, Len);
fs.Read (ItemName [1], Len);
fs.Read (ItemPos, sizeof (ItemPos));
// Does this item still exist?
NewIdx := Names.IndexOf (ItemName);
if NewIdx <> -1 then
if (dm.Position [NewIdx].x <> ItemPos.x) or
(dm.Position [NewIdx].y <> ItemPos.y) then
dm.Position [NewIdx] := ItemPos;

end;
finally
Names.Free;

end;

➤ Listing 9

26 The Delphi Magazine Issue 69

Following the authentication
string is a count of the number of
items stored in the file. For each
item, we store the desktop item
name as a Pascal string, followed
by a TPoint data structure for the
item position. When streaming
strings into a file, it’s generally
much easier to store them as
Pascal strings with a preceding
length byte. This allows the
‘reader’ to read the length byte
first, and then know how many
more bytes to read or skip, as
appropriate. If you want, you can
even read from a stream directly
into a dynamic string. The code in
Listing 9 illustrates how to do this,
but be sure to set the string length
first!

You will also see that the code
reads the current list of item names
directly from a TDesktopManager
component into a stringlist. This is
essential, because not only have
the item positions possibly
changed, but also the ordering of
the various items may have
changed. Don’t assume that the
saved item 35 corresponds to the
current item 35. By doing a lookup
on an up-to-date list of desktop
names, we know that we are refer-
encing the correct item. If any item
in the saved layout cannot be
found in the current desktop
configuration, then it is ignored.

I had feared that the desktop
layout ‘Restore’ function might
introduce quite a bit of flicker, if a
large number of items were being
moved around. Thankfully, how-
ever, this has proved not to be the
case. Obviously the extra time that
I spent bludgeoning Microsoft’s
redrawing code into submission
was worthwhile!

One thing which you will notice
in Jeff Richter’s original code is
that he ensures the desktop
listview control has the
Auto-Arrange feature turned off
before doing the desktop restore.
This seemed slightly odd to me
because, if you have got
Auto-Arrange turned on, you are
not likely to be much interested in
maintaining a specific desktop
layout anyway, but then again per-
haps I am missing something
subtle here!

Conclusions
There are other facilities you could
add to the DeskLayout program,
such as the ability to save and
restore text foreground and back-
ground colours, along with the
positioning information. Or you
could write the application so as to
place an icon in the Windows tray
area, for instant access to the pro-
gram’s functionality. Regarding
TDesktopManager itself, you could
add a lot more functionality, such
as spacing changes, auto-arrange
(if you must!), or maybe add the
code needed to retrieve and
change the bitmap associated with
each desktop item. There is plenty
of scope for the adventurous here!

Finally, I should warn you that
there is a subtle ‘feature’ in the way
that I’ve implemented the PendOn-
DesktopMessage routine. Because of
the way in which it calls Applica-
tion.ProcessMessages internally,
there exists the possibility of trig-
gering some new call on the DLL
while the application is waiting to
receive a WM_COPYDATA response. If
you want to see this happen, try
removing the outermost try..
finally block from the
RefreshBtnClick method in
DeskTesterForm.Pas, then rebuild
and run the testbed application. If
you now try clicking the Refresh
button twice in rapid succession
(ie while it’s still processing the
first click) then you’ll hang the pro-
gram. I shamelessly cheated by dis-
abling the Refresh button to

File/s Description

DeskManager.dpr
DeskManagerDlg.res

Source code for the DLL itself. The all-important
.RES file contains the resource template for the
hidden dialog window.

DesktopManager.pas Source for the TDesktopManager component.
Compile it and install into a package of your
choice.

DeskManMessages.pas Message definitions used by both the DLL and the
component.

DeskTester.dpr
DeskTester.exe
DeskTesterForm.pas

Source code and executable for the testbed
application. This is compiled as a packaged Delphi
5 application.

DeskLayout.dpr
DeskLayout.exe
DeskLayoutForm.pas

Source code and executable for the desktop layout
save/restore demo. This is compiled as a packaged
Delphi 5 application.

prevent this eventuality, but a
cleaner solution might be to imple-
ment an ‘I’m busy, go away’ excep-
tion which is triggered if a busy
state is detected on entry to
critical code.

A final hint: within the
TDesktopManager implementation,
you can easily check if the control
is busy by examining the state of
the fGotResponse field. The way I’ve
written the code, this field has the
value -1 whenever we’re spinning
on Application.ProcessMessages.

Files Roundup
Because of the relatively large
number of source files this month,
Table 1 gives a quick summary of
what’s what.

Dave is a freelance consultant,
programmer and technical jour-
nalist specialising in system-level
Windows programming, and
cross-platform issues. He is the
Technical Editor of The Delphi
Magazine. You can contact Dave
at TechEditor@itecuk.com

This article and all associated code
is ©2001 by Dave Jewell, All Rights
Reserved.

➤ Table 1

	Introducing TDesktopManager
	The Deeply Fragrant AllocateHWnd Function
	Location, Location, Location!
	Putting It All Together
	Conclusions
	Files Roundup

